キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

中学数学2年【2016年度第1版】

■□■ 目次 ■□■

1.

・【予習 式の計算】

1年の復習(1)

1年の復習(2)

単項式, 多項式の定義

項,係数の定義

次数の定義

項,係数,次数

同類項の定義

同類項の計算

単項式の乗法の定義

単項式の乗法の計算

単項式の除法の定義

単項式の除法の計算

・学習 単項式と多項式

単項式と多項式の定義

単項式, 多項式を選ぶ

項,係数の定義

多項式の項を答える

係数

単項式の次数の定義

単項式の次数

多項式の次数, 1次式, 2次式の定義

多項式の次数

1次式, 2次式

・学習 多項式の加法・減法

同類項の定義

同類項を選ぶ

同類項をまとめる(整数係数)

同類項をまとめる(分数係数)

同類項をまとめる(小数係数)

式の加法(式をたてる場合)

式の減法(式が与えられた場合)

縦書きの計算の方法

加法(縦書き)

減法(縦書き)

・学習 式と数の乗法・除法

多項式と数の乗法

多項式と数の乗法(分数をかける)

多項式と数の除法(整数でわる)

多項式と数の除法(分数でわる)

いろいろな計算 2(2a-b)+3(a+2b)

分数の形の和や差(まず通分~両方とも分数の形)

分数の形の和や差(展開すると係数が整数)

・学習 単項式の乗法・除法

単項式の乗法(整数係数)

単項式の乗法(分数係数)

単項式の乗法(累乗があるが累乗の計算なし)

単項式の乗法(累乗の計算あり)

累乗の計算 (-3x)²

累乗の計算 $(-2x)^3$

累乗の計算(片方に累乗, 両方に累乗)

単項式の除法(整数係数)

単項式の除法 12a³ ÷3a²

単項式の除法(分数係数で累乗あり)

乗法と除法の混じった計算(整数係数)

乗法と除法の混じった計算(分数係数)

乗法と除法の混じった計算(累乗の混じった式)

四則の混じった計算

・学習 式の利用

式の値①

式による説明①(2つの偶数の和)

式による説明②(連続する3つの整数)

式による説明③(各位の数を入れかえ)

等式の変形①(xについて解く)

等式の変形②(指定した文字について解く(I))

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

比の性質①(a:b=c:dのときad=bc) 比の性質②(5:x=15:12)

・[保証テスト-単項式と多項式]

単項式と多項式

多項式の項を答える

係数

単項式の次数

多項式の次数

1次式, 2次式, 3次式

•[保証テスト-多項式の加法・減法]

同類項をまとめる

式の加法

式の減法

加法•減法(分数)

加法•減法(小数)

・「保証テストー式と数の乗法・除法]

多項式と数の乗法

多項式と数の除法

いろいろな計算

分数の形の和や差

A, B, Cに式を代入する問題

・「保証テストー単項式の乗法・除法]

単項式の乗法

累乗の計算

単項式の除法

乗法と除法の混じった計算

• 「保証テスト-式の利用]

式の値

式による説明①(連続する3つの整数)

式による説明②(各位の数を入れかえ)

等式の変形①(xについて解く)

等式の変形②(面積の公式で解く)

比の性質

体積の問題

式の説明と図形の問題

2.

·【予習 連立方程式】

復習

導入

定義

代入法による解き方

代入法による計算

加減法による解き方(1)

加減法による解き方(2)

加減法による計算

・学習 連立方程式とその解

2元1次方程式

2つの2元1次方程式をみたす解

連立方程式の解の意味

連立方程式にあてはまる解

連立方程式の解き方(消去ということ-代入法にて)

連立方程式の解き方(代入法)

連立方程式の解き方(加減法の考え方-単純にたす)

連立方程式の解き方(加減法-単純にひく)

連立方程式の解き方(加減法-1式を整数倍してたす)

連立方程式の解き方(加減法-1式を整数倍してひく)

連立方程式の解き方(加減法-2式を整数倍してたす)

連立方程式の解き方(加減法-2式を整数倍してひく)

連立方程式の消去法の見通し

・学習 いろいろな連立方程式

見やすい形に整理する

()をふくむもの

小数をふくむもの

分数をふくむもの

A=B=Cの形

未知数をふくむもの

・学習 連立方程式の利用

個数の式・金額の式の連立(鶴亀算型)

全体の数量・2つの数量の関係の2式

同じ数量の関係からの2式の連立

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

同じ数量からの2式(割合を含む)

過不足の問題

整数の問題(位の数を入れかえ)

(道のり) = (速さ) × (時間)

(時間) = (道のり) ÷ (速さ)

出会い・追いつき

列車が鉄橋を通過する問題

食塩水の濃度

割合(x, yのおき方のくふう)

水をくみだす「速さ」

・[保証テストー連立方程式とその解]

連立方程式の解き方(代入法)

連立方程式の解き方(加減法①)

連立方程式の解き方(加減法②)

見やすい形に整理する

・「保証テストーいろいろな連立方程式]

いろいろな連立方程式(見やすい形に整理)

いろいろな連立方程式(分数形)

いろいろな連立方程式(A=B=C)

未知数をふくむもの

ax-4v=1を成り立たせるa

・「保証テストー連立方程式の利用]

整数の問題①

整数の問題②

みかんとりんごの数量関係

過不足の問題

(時間) = (道のり) ÷ (速さ)

出会い・追いつき

食塩水の濃度

割合

3.

·【予習 1次関数】

座標の復習

1次関数の定義

1次関数の判定

1次関数のグラフ

・学習 1次関数と変化の割合

1次関数の導入

1次関数の定義

1次関数と比例の関係

1次関数の式を選ぶ

1次関数の式を選ぶ(文章題)

xの値が1ずつ増加するとvはいくつ増加するか

(yの増加量/xの増加量)を求める

変化の割合の定義

変化の割合

変化の割合とvの増加量

・学習 1次関数のグラフ

対応表をかいてグラフを選ぶ

グラフ上の点

比例のグラフとの関係(1)

比例のグラフとの関係(2)

切片の定義

切片

傾きの意味

傾き

1次関数の傾きと切片

傾きと切片から式を答える

傾きの等しいものは平行

1次関数の増減とグラフ

グラフが右上がりか右下がりか

1次関数の表,式,グラフの関係のまとめ

・学習 グラフのかき方と変域

y=ax+bのグラフ(a, bとも整数)

y=ax+bのグラフ(a, bとも分数)

式からグラフを選ぶ

1次関数と変域 (1)($\Diamond \leq x < \bigcirc$ のとき)

1次関数と変域 (2)(◇≦y<○のとき)

・学習 1次関数の式の求め方

直線の式の求め方

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

グラフから直線の式を求める

1次関数の式を求める(1)(1点と傾きより)

1次関数の式を求める(2)(1点と1直線より)

1次関数の式を求める(3)(1点と切片より)

1次関数の式を求める(4)(2点より方程式を)

・学習 1次関数の利用

図形の問題

凍さの問題

変化の割合が与えられている場合(水そうの問題) 変化の割合が与えられている場合(ろうそくの問題) 変化の割合が与えられている場合(高さと気温の問題)

変化の割合を求める場合(ばねの問題)

動点の問題

グラフを読む(右下がりのグラフ) グラフを読む(切片が読み取れない場合)

・学習 2元1次方程式のグラフ

2元1次方程式のグラフの導入

方程式のグラフの用語

方程式を変形してグラフをかく

2点を利用する方程式のグラフのかき方

v=3のグラフのかき方

x=2のグラフのかき方

方程式のグラフを選ぶ

軸に平行な直線を式で表す

・学習 連立方程式とグラフ

連立方程式の解とグラフの導入

グラフを用いて連立方程式の解を求める

グラフから2直線の式を求め、交点の座標を求める

グラフが重なる場合

グラフが平行な場合

連立方程式の解の数

•[保証テスト-1 次関数と変化の割合]

1次関数の定義

1次関数の対応表

1次関数の式を選ぶ

1次関数の式と変化の割合

•[保証テスト-1 次関数のグラフ]

切片と傾きの定義

傾きと切片から式を答える

1次関数のグラフ①

1次関数のグラフ②

•[保証テストーグラフのかき方と変域]

y=ax+bのグラフのかき方

式からグラフを選ぶ

1次関数と変域

•[保証テスト-1 次関数の式の求め方]

グラフから直線の式を求める

1次関数の式を求める①

1次関数の式を求める②

1次関数の式を求める③

•「保証テストー1 次関数の利用]

1次関数の利用①

1次関数の利用②

1次関数の利用③

動点の応用問題

•[保証テスト-2 元 1 次方程式のグラフ]

2元1次方程式のグラフ

方程式のグラフを選ぶ

軸に平行な直線を式で表す

•「保証テストー連立方程式とグラフ]

グラフから交点の座標を求める

連立方程式の解の数

直線の交点

直線で囲まれた部分の面積

グラフの利用

4.

・【予習 平行と合同】

対頂角,同位角,錯角の定義 平行線の同位角, 錯角

平行線に関する角を求める

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

三角形の内角の和

三角形の角を求める

直角, 鋭角, 鈍角

多角形の定義

・学習 平行線と角

対頂角の性質

対頂角の性質の利用(角度を求める)

同位角と錯角(意味)

平行線の同位角・錯角

平行線になる条件

平行線と角(角度を求める・単純形)

平行線の同側内角の和

1//m, m//nならば1//n

平行線と角(角度を求める・応用)

三角形の内角の和

三角形の内角・外角(角度を求める・単純形)

三角形の内角・外角の利用

平行線と三角形の角(角度を求める)

鋭角•直角•鈍角

多角形の内角の和(考え方)

多角形の内角の和(適用)

多角形の外角の和(考え方)

多角形の外角の和(適用)

多角形の内角・外角(角度を求める)

・学習 合同な図形

合同の意味

合同な図形の性質

合同な三角形をかくには

三角形の合同条件

合同な三角形を選ぶ(合同条件の適用)

三角形の合同を示す①(合同条件の適用)

三角形の合同を示す②(合同条件の適用)

三角形の合同を示す③(合同条件の適用)

仮定と結論(意味)

仮定と結論(練習)

証明の進め方

証明のしかた①

証明のしかた②

証明のしかた③

•[保証テスト-平行線と角]

同位角と錯角の意味

対頂角の性質の利用

平行線と角

三角形の内角の和

平行線と三角形の角

いろいろな図形と角

三角形と角

鋭角•直角•鈍角

多角形の内角・外角(1)

多角形の内角・外角(2)

•[保証テスト-合同な図形]

合同の条件

合同な三角形(1)

合同な三角形 (2)

仮定と結論

三角形と証明

合同の利用(1)

合同の利用(2)

5.

・【予習 三角形と四角形】

二等辺三角形の定義

二等辺三角形

二等辺三角形の性質の確認

直角三角形の合同

四角形の各部の呼び名

平行四辺形

いろいろな四角形

•学習 三角形

二等辺三角形の底角

二等辺三角形の底角が等しいことの証明

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

二等辺三角形になる条件(定理の証明)

定義と定理

正三角形の性質

逆

直角三角形の合同条件①(斜辺と1鋭角)

直角三角形の合同条件②(斜辺と1辺)

直角三角形の合同条件のまとめ

合同な直角三角形を見つける(合同条件の適用)

証明①(直角三角形の合同条件の適用)

証明②(二等辺三角形での場面)

直角二等辺三角形での証明問題

•学習 平行四辺形

平行四辺形の向かい合う辺

平行四辺形の向かい合う角

平行四辺形の対角線の関係

平行四辺形の性質のまとめ

平行四辺形の辺の性質を使った証明

平行四辺形になる条件(1組の辺)

平行四辺形になる条件のまとめ

平行四辺形になることの証明②(対角線)

平行四辺形になることの証明③(1組の辺)

長方形

ひし形

ひし形の対角線が直交する証明

正方形

いろいろな平行四辺形のまとめ

・学習 平行線と面積

平行線と三角形の面積(考え方)

平行線と三角形の面積(台形の対角線)

平行線と三角形の面積(底辺・高さが変化)

平行線と三角形の面積(平行四辺形)

平行線と三角形の面積(適用)

等積変形

平行線と三角形の面積(応用)

・[保証テスト-三角形]

二等辺三角形の性質(1)

二等辺三角形の性質(2)

逆

合同な直角三角形を選ぶ

直角三角形の合同条件の利用

•[保証テスト-平行四辺形]

平行四辺形の性質

いろいろな四角形

平行四辺形の性質を使った証明(1)

平行四辺形の性質を使った証明(2)

ひし形に関する証明

長方形

•[保証テスト-平行線と面積]

三角形の面積(底辺・高さが変化)

平行線と三角形の面積(1)

平行線と三角形の面積(2)

等積変形

6.

·【予習 確率】

起こりやすさと相対度数

相対度数と確率

確率の考え方(同様に確からしい)

確率①(1個のさいころ)

確率②(カード)

確率③(玉を取り出す)

確率0,確率1

Aの起こらない確率(考え方)

Aの起こらない確率(適用)

・学習 確率の求め方

場合の数(2個のさいころ・表の見方)

場合の数(樹形図の見方①)

場合の数(樹形図の見方②)

樹形図の練習

樹形図の練習(組合せの数)

確率の求め方(考え方)

キョーイクソフト http://www.kyoiku-soft.com TLTソフトウェア http://www.study-shop.com

確率の求め方(3枚の硬貨を投げる)

確率の求め方(2つのさいころ)

確率の求め方(カードで整数をつくる)

確率の求め方(あたりくじ)

確率の求め方(組合せ)

少なくとも…の意味

確率の求め方(少なくとも…)

•[保証テストー確率]

確率の基本(1)

確率の基本(2)

少なくとも…の確率

カードでできる整数

円周上の点でできる三角形

袋の中から取り出す

確率の応用